
Can we combine pruning and interpretability techniques 
(linear probing, model editing) to understand what’s learned?

Locating and Editing Factual Associations in GPT [Meng, et al.] John Hewitt’s blog post on Designing and Interpreting Probes

Preliminary Pruning on Language 
Models for Code

Failed Attempt I: Rewinding to CodeBERT?

 Alex
Gu

Bharat 
Runwal

Diganta 
Misra

Ria
Sonecha

Saaketh 
Vedantam

Final Result

Batch 
Size 
16

Batch 
Size 

8

Lesson 1: batch size matters a lot
Lesson 2: need to rewind to finetuned CodeBERT?

Failed Attempt II: Overfitting?

Random 
actually 

performs 
better?

Hypothesis: are we overfitting every time we finetune?

Can pruning be used to 
understand how language 
models for text differ from 
language models for code?
Setting: Ruby code summarization with 
CodeBERT measured with BLEU score

Exciting Directions for Exploration!

pass@k metric Dense (%) OMP(%) IMP(%)

pass@1 74.0 59.0 44.66

pass@2 93.0 82.56 69.35

pass@10 99.99 99.93 99.71

Can we look holistically at other code tasks/metrics to 
understand what is lost when we prune? (CodeT5 on APPS)

Diet Code Is Healthy: Simplifying Programs for Pre-trained Models of Code [Zhang, et al. 2022]

How much information do code models really need to 
produce and/or summarize code (data pruning)?

How can we leverage the structured and precise nature of 
code to design more efficient language models on them?

A large-scale benchmark for few-shot program induction 
and synthesis [Alet, et al.]

- Abstractions
- Precise semantics
- Access to execution 

information
- Test cases 

(correctness)
- Compositionality


